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Strip waves in vibrated shear-thickening wormlike micellar solutions
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We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving
acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability
using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our

model successfully reproduces the observed transitions.
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I. INTRODUCTION

Faraday [1] discovered that a vertically oscillated fluid
spontaneously develops free surface waves. Over the past
several decades, the Faraday system has become one of the
canonical systems in which to study self-organization, and
Faraday waves in Newtonian fluids have been extensively
researched. Faraday envisioned a different application for his
system: The difference between oil and the white of egg is
remarkable...the crispated state may be a useful and even
important indication of the internal constitution of different
liquids. Faraday’s vision is now being realized as his system
is increasingly employed to study the rheology of complex
fluids in temporal and spatial scales that are inaccessible
through other techniques.

Starting with Wagner’s [2] and Raynal’s [3] investigations
of polymeric solutions, the Faraday system is now com-
monly used to study complex fluids. Lioubashevski et al. [4]
found localized traveling waves in shear-thinning clay sus-
pensions, and were able to deduce the viscosity of the liquid
from the threshold for Faraday waves. Localized structures
were also observed by Merkt et al. [5] in a shear-thickening
particulate suspension. Ballesta er al. examined dilute [6,7]
and semidilute [8] wormlike micellar solutions in the Fara-
day system; in the semidilute regime they discovered a sig-
nature of the fluid’s elasticity in the shape of the phase dia-
gram boundary between the flat and wavy state, and in the
dilute regime they observed the formation of shear-induced-
structures driven by Faraday waves. Convection rolls in-
duced by vibrations were observed by Shiba et al. [9] in a
viscoplastic fluid, and by Ebata er al. [10] in non-Brownian
suspensions.

Here we present the results of our study of a dilute worm-
like micellar solution (WMS) in the Faraday system. Worm-
like micellar solutions form in an aqueous solution of surfac-
tant and salt. Surfactant molecules in water usually form
spherical micelles; the addition of salt produces long poly-
merlike micelles as the salt is sequestered from the solution
by the surfactant. The properties of these fluids are summa-
rized in a recent review [11]. For our study, the most salient
rheological characteristics of dilute WMS are that their re-
sponse is purely viscous, their viscosity is shear-rate depen-
dent, and they achieve their ultimate viscosity only after be-
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ing sheared for a period called the induction time. The
nonlinear rheological response of these fluids is considered
to arise from flow induced mesoscopic structure [12].

Our system displays the usual Faraday waves above a
critical acceleration, but additionally at a yet higher accelera-
tion threshold a transition occurs in which the fluid accumu-
lates into elongated domains of steep standing waves [see
Fig. 1 and 2(b)]. We call these strip waves. Below we present
our experimental characterization of this phenomenon and
using a model for Faraday waves adapted for shear-rate de-
pendent viscosity show that the rheological properties of the
fluid are responsible for the formation of strip waves.

II. EXPERIMENTS

In our experiments we used worm-like micellar solutions
made from an equimolar solution of cetyltrimethylammo-
nium bromide (CTAB) and sodium salicylate (NaSal) with

FIG. 1. Time evolution of the strip wave instability for a
=14 g, f=80 Hz, h=0.75 mm, and C=4 mM. (a)-(d) Show the
progression of the instability as viewed from directly above follow-
ing an increase of the acceleration to the critical acceleration for the
onset of strip waves. Immediately after the acceleration change the
surface waves remain in the form of a square Faraday pattern cor-
responding to the preincrease value of the acceleration. Over the
course of four seconds, the square pattern is destroyed by the nucle-
ation and saturation of large amplitude waves that ultimately draw
in all the fluid in the container. The boundary of a strip wave is
shown in (d) by a dashed line.
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FIG. 2. Side view of surface waves (a) below and (b) above the
critical acceleration for strip waves for f=80 Hz, #=0.75 mm, and
C=4 mM. (a) Faraday waves at a=7 g. The peak-to-peak ampli-
tude of the waves is 0.8 mm. (b) Fully developed strip waves at a
=13 g. The peak-to-peak amplitude of the waves is 6.6 mm. Note
that the amplitude of strip waves is eight times greater than Faraday
waves.

concentrations for each components ranging from 0.5 to 10
mM. We measured the viscosity of our samples in a cone-
plate geometry (40 mm radius, angle 2° solvent trap) using a
AR2000ex (TA Instruments) rheometer at 25.0°. We fol-
lowed the protocol of Hu et al. [13]. Each measurement was
performed on a freshly loaded sample. The sample was al-
lowed to thermally equilibrate with the instrument, after
which a constant shear rate was applied. The stress either
decreased or increased monotonically for the first 10-200 s,
depending on the shear rate. After this transient period the
stress reached a steady-state value about which it fluctuated.
The average steady-state value of viscosity versus shear rate
is plotted in Fig. 3. The error bars reflect the low and high
values of the fluctuations about the average value. These data
show the characteristic shear-rate dependence of the viscos-
ity of dilute WMS: for shear rates y below 10 s~ the vis-
cosity decreases with shear rate; for intermediate shear rates
8 sI< <20 s7!, the viscosity increases; and for high
shear rates, the viscosity decreases. We designate these re-
gimes shear-thinning I, shear-thickening, and shear-thinning
I, respectively.

We vertically vibrated the solutions in a circular container
mounted on an electrodynamic shaker (Labworks ET-140).
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FIG. 3. Kinematic viscosity versus shear rate for a 4 mM CTAB/
NaSal equimolar solution. Solid line denotes piecewise linear seg-
ment parameterization of viscosity given by v; in Table 1. The error
bars represent fluctuations in the viscosity during a single
measurement.
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The temperature of the fluid was unregulated; periodic
checks with a thermocouple showed no significant deviations
from room temperature which fluctuated by =2 °C. Heating
of the container due to the shaker was avoided by coupling
the container to the shaker with an acrylic rod and by limit-
ing the duration of the experiments.

In our initial experiments the container consisted of an
aluminum plate and rigid Plexiglas sidewalls, but we found
that the fluid agglomerated at the walls during vibration so
that all the fluid ended up in a 1 cm band next to the wall. In
order to avoid this boundary effect, we removed the walls
and applied a thin coat of silicone glue to the perimeter of
the plate. The solution was thus kept in the cell by the hy-
drophobicity of the boundary. We varied the depth of the
fluid from 0.5 up to 2 mm. Layers shallower than 0.5 mm did
not coat the substrate uniformly, and layers deeper than 2
mm escaped over hydrophobic coating. The cell was oscil-
lated with acceleration a(t)=a, cos(2mft) where a, is the
peak acceleration and f is the driving frequency. We varied
the acceleration from O to 40 g, where g is the acceleration
due to gravity, and the frequency from 50 to 190 Hz. The
acceleration was measured using an accelerometer (PCB
352¢65) mounted on the shaker platform, and monitored
with an oscilloscope. Our images were recorded with a high
speed camera (Phantom 7.3, Vision Research) from either the
top or side.

We observed the onset of square-pattern Faraday waves at
low accelerations. The same pattern is universally observed
in Newtonian fluids. However, unlike in Newtonian fluids or
the semidilute WMS studied by Ballesta et al. [8], the Fara-
day waves for our dilute WMS were of finite amplitude at
onset. Increasing the acceleration above onset produced
waves of progressively, but modestly, larger amplitude until
a second threshold was reached. At this second transition
point we observed an instability which culminated in the
fluid distributed into long and narrow domains of large am-
plitude waves [see Fig. 1(b)] separated by thin (<100 um)
layers of quiescent fluid. The instability manifested immedi-
ately upon reaching the transition point and the elongated
structures reached saturation within a few seconds, with satu-
ration occurring faster for lower frequencies. The boundaries
of the domains were dynamic and shifted with time. As
shown in Fig. 2, the wave amplitude increased by an order of
magnitude after the transition to strip waves. Furthermore,
we noted that despite their slender aspect ratio there was no
tendency for the wave crests to pinch off into droplets as
would be expected for a Newtonian fluid.

Strip waves occurred over the entire range of experimen-
tal accessible driving frequencies. Figures 4 and 5 show that
the acceleration threshold increased with driving frequency,
and depended weakly on the fluid depth and concentration.
We also found depth and concentration thresholds beyond
which the instability was absent. These thresholds are de-
noted in Fig. 5 by the absence of data for concentrations
below 1 mM and for depths above a frequency-dependent
value.

III. MODEL

We hypothesized that the strip wave instability is due to
the drop in the viscosity when the shear rate generated by the
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FIG. 4. Phase diagram of the instability as function of accelera-
tion and frequency for £=0.75 mm and C=4 mM. The threshold
acceleration for the transition from a flat interface to Faraday waves
and from Faraday waves to strip waves are denoted by diamonds
and circles, respectively.

Faraday waves exceeds the shear rate at the boundary be-
tween the shear-thickening and shear-thinning II regimes
(see Fig. 3). Our reasoning was based on two well-known
features of Faraday waves. First, the threshold for Faraday
waves in a Newtonian fluid is fixed by viscosity. For the
inviscid case the threshold is identically zero. For finite vis-
cosity the threshold increases with viscosity [14]. Second,
the amplitude of the waves depends on the distance above
the threshold. Given these characteristics, it is plausible that
the threshold for the Faraday instability in WMS is deter-
mined by a dynamical process in which the shear generated
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FIG. 5. Threshold acceleration as a function of (a) depth and (b)
concentration for frequencies f=80 (dark) and f=120 Hz (light).
The diamonds and circles denote the threshold for Faraday waves
and strip waves, respectively. For the varying depth measurements
the concentration was 4 mM and for the varying concentration mea-
surements the depth was 0.75 mm. We exclusively used equimolar

solutions, and thus the concentration refers to both the concentra-
tions of CTAB and NaSal.
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by waves lowers the viscosity thus increasing the distance
above threshold.

From the above scenario we expect the onset of Faraday
waves, i.e., the transition from the flat state to the corrugated
state, to be discontinuous. Consider the threshold for some
zero shear-rate viscosity (0.20 Stokes in our system). Since
the fluid is initially motionless, Faraday waves will first ap-
pear when the acceleration crosses this critical value. But the
waves generate shear causing the viscosity to decrease be-
cause the fluid is shear thinning. The decreased viscosity
increases the apparent distance of the system above thresh-
old, resulting in waves of greater amplitude. Higher ampli-
tude waves cause yet more shear, further lowering the vis-
cosity. This feedback loop will continue to amplify the waves
until the viscosity reaches a minimum. In our case, the latter
would occur at the crossover from the shear-thinning I to the
shear-thickening regime. Moreover, we expect a similar pro-
cess will cause a discontinuity at the crossover point between
the shear-thickening and shear-thinning II regime.

We examined these scenarios with numerical experiments
with a nonlinear variant of the Mathieu equation. The
Mathieu equation emerges naturally from the linear stability
analysis of the inviscid Faraday problem and describes the
amplitudes of the modes [15]. While the numerical analysis
of Kumar and Tuckerman [16] provides an exact description
of the threshold, the Mathieu equation with an ad hoc damp-
ing term has nonetheless proved useful for describing the
threshold and the near-threshold amplitude of the waves
[17,18].

We began with the equation derived by Cerda and Ti-
rapegui [19] in which the damping term includes dissipation
from the bulk and from the interaction of the surface waves
with the bottom of the container,

Lok,
Gt 2k o S o)
=0, (1)

[w; + ak tanh kh cos(Qr) &,

where &, is the amplitude of the kth mode surface wave, k
and w, are its wave number and angular frequency, () is the
driving frequency, 4 is the layer depth, and v is the kinematic
viscosity. The dissipation coefficients C; and C, are given in
[19],

2 tanh s(cosh 25 +2s% + 1)
Cils) = sinh 2s — 2s ’ )

Cy(s)
_ tanh[3 cosh® s(sinh 25 — 25 — 45s/3) + s*(sinh 25 — 25)]
- (sinh 2s —2s)?

3)

and the relation between k and w; is the usual wi
=(gk+ok®/ p)tanh kh.

We assume that the most unstable mode k= corresponds
to the resonance condition w,=£)/2, which is strictly correct
in the limit @ — 0. Introducing y=£,/€ and nonlinear detun-
ing by replacing y with sin y yields
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Cy(kh) .

5 (v K2
ARG 2C,(xh)

+ [w* + ax tanh(kh)cos(2w, ) ]sin y =0, (4)

Cz(Kh) K
where v depends on the instantaneous value of y. A nonlinear
term is needed to prevent the oscillatory solutions from di-
verging [20]. The parameter € is needed for dimensional con-
sistency and reflects the length scale at which nonlinear ef-
fects become important. The most likely candidates for this
quantity are the fluid depth (~0.7-2 mm) or the boundary
layer thickness (\2v/w,~ 180-360 um).

We incorporate the viscous response of WMS by allowing
the kinematic viscosity to vary as function of the instanta-
neous shear rate as measured for a 4 mM WMS (shown in
Fig. 3). We parameterized the measured viscosity with a
piecewise continuous set of linear segments as shown in Fig.
3. The relation between y and the shear rate y follows from
an energy argument [21]. The rate of energy density dissipa-
tion is p¥(C,/C,)y? in our model and 2pv¥* from continuum

theory. Hence,
C,(kh)
y=1\| ——k{y. 5
Y=\ 20, (kh) y (5)

The numerical results are insensitive to the value of € for
€=10"2 cm; for smaller values the transition to higher am-
plitudes can be delayed (see below). For our calculations €
=1 cm. We investigated various forms of nonlinearities
(e.g., y+ay® with a= + 1, or +1/6) before settling on sin y
in Eq. (4). The results are independent of this choice. All
calculations, unless noted otherwise, used initial conditions
y(0)=10"* and y'(0)=0.

Numerical integration of Eq. (4) gave either decaying,
periodic, or chaotic solutions depending on the magnitude of
the driving parameter a. Chaotic solutions arise from the
nonlinearity introduced by the sine term, and are not physical
relevant for our system as they are present whether the vis-
cosity is Newtonian or non-Newtonian. For the periodic so-
Iutions we took half the peak-to-peak distance as the measure
of the amplitude. In order to isolate the effect of introducing
a shear-dependent viscosity we began our numerical experi-
ments with a Newtonian viscosity model, and introduced
successively a shear-thinning regime, a shear-thickening re-
gime, and a final shear-thinning regime which plateaued to a
shear-rate independent viscosity. Below we report our results
at each stage of this process. The results of our computations
are summarized in Fig. 6. The corresponding viscosity model
is shown in the insets.

Figure 6(a) shows the amplitude as a function of accelera-
tion for a constant kinematic viscosity equal of 0.12 St. Our
model by construction reproduces the well-known behavior
of Faraday waves in a Newtonian fluid. At a critical accel-
eration a, there is a supercritical transition to oscillations,
and above the transition the amplitude increases as the
square root of the distance above threshold (a—a.)/a,. In our
calculations the transition occurs at an acceleration of 9.5 g.
At even higher accelerations (a=20 g) the model produces
chaotic solutions. Chaos in the Mathieu equation is well es-
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tablished; for our particular application in which we are in-
vestigating the impact of the dissipative term on the solu-
tions, we ignore these chaotic solutions because they arise
irrespective of the rheology whenever the drive is suffi-
ciently large.

For a shear-thinning rheology our model also produces a
transition to an oscillating state, but unlike when the viscos-
ity is constant the transition is discontinuous as shown by the
(red) circles in Fig. 6(b). For this rheology the viscosity was
0.2 St at zero shear rate, thinned to 0.12 St by 8 s7!, and was
shear-rate independent thereafter. As argued above, we ex-
pect a discontinuous transition because the shearing due to
the waves lowers the viscosity which in turn allows the
waves to grow. We observe in our calculation that the tran-
sition to Faraday waves is subcritical with the marginal sta-
bility point set by the zero shear-rate viscosity. For accelera-
tions above the marginal stability point, the quiescent state
loses stability to a finite amplitude limit cycle. The limit
cycle branch can be traced back to a saddle-nose bifurcation
that manifests when the acceleration crosses the threshold for
the plateau viscosity »,=0.12 St. This is illustrated by the
similarity of the curve in Fig. 6(a) and the (green) squares in
Fig. 6(b) which are the results of the computation with y(0)
set to a large value 1072, Thus, once the transition occurs, the
fluid behaves as though its viscosity were v...

Introducing a shear-thickening regime following the
shear-thinning regime does not qualitatively change the ob-
served states. The shear-thinning/shear-thickening rheology
was implemented as shown in Fig. 6(c) inset. The numerical
solutions are similar to those found with a shear-thinning
rheology, except that the solution is trapped by the steep rise
in viscosity after the shear-thinning regime and the amplitude
remains small.

Lastly, we implemented the second shear-thinning regime
in WMS. We terminated the shear-thinning II regime with a
plateau of 0.08 St for shear rates above 400 s~! because
otherwise the viscosity would continue to fall and ultimately
cross zero. Figure 6(d) shows the amplitude versus accelera-
tion for the full rheology of the 4 mM WMS. These data
shows a second discontinuity.

The state after the second discontinuity is chaotic, and
thus required further analysis to determine if the transition is
due to the nonlinearity of the Mathieu equation or to the
shear-dependence of the viscosity. The inset in Fig. 6(d)
shows the measured viscosity of a 4 mM WMS. The dashed
line shows a continuation scheme given by the v, model in
Table I in which the viscosity is assumed to be constant
above some shear rate. The computed final state for this vis-
cosity model is oscillatory. Moreover, the acceleration
threshold for the transition to the oscillatory state is identical
to that found for the full rheology. Thus, we concluded that
the transition for the measured rheology is due to the shear-
rate dependence.

IV. DISCUSSION

Our model shows that given the two shear-thinning re-
gimes observed in the viscous response, we should expect to
see two transitions. Furthermore, our model shows that the
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FIG. 6. (Color online) Amplitude squared versus acceleration calculated from Eq. (4) at f=120 Hz for (a) Newtonian fluid and (b)—(d)
various non-Newtonian rheologies shown in the insets. (a) Shows a \e“a——ac rise characteristic of Faraday waves in a simple fluid with v
=0.12 St. Inset shows the amplitude at higher acceleration. Note the transition to chaos at a=20 g. (b) Solid (red) circles show a
discontinuous transition to Faraday waves for a shear-thinning rheology. Open (green) squares show the transition to Faraday waves for a
sufficiently large perturbation. Note that the Faraday wave branch traces the same curve as shown in Newtonian case (a). (¢) Discontinuous
transition to Faraday waves for a shear thinning followed by a shear-thickening rheology. (d) Transitions produced by the full rheology of
a4 mM WMS (red filled circles) shown in inset and for a rheology which plateaus at high shear rate (solid blue squares) as shown by the

dashed curve in inset.

first of these transitions is from a constant time-independent
solution to a oscillatory solution with finite amplitude, and
that the second transition is from an oscillatory solution to a
large amplitude oscillatory. The model thus qualitative repro-
duces the sequence of transitions observed in our experi-
ments.

Figure 7 shows the phase boundaries measured experi-
mentally (open symbols), calculated from our model (filled

TABLE 1. Piecewise linear models of viscosity. Viscosity for
shear rates not listed is given by linear interpolation between near-
est two values.

Y 9] V3
ACH! (St) (St) (St)
0 0.2 0.2 0.07
8 0.12 0.12 0.04
25 0.4 0.4 0.3
70 n/a 0.29 n/a
130 0.15 0.15 0.15
400 0.08 0.15 0.08
o0 0.08 0.15 0.08
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FIG. 7. (Color online) Phase diagram as a function of accelera-
tion and frequency from model (filled symbols) and observation
(unfilled symbols). Diamonds correspond to the transition to Fara-
day waves and the circles correspond to the transition to strip
waves, as in Fig. 4. The dashed curves are the acceleration thresh-
old values for the Faraday instability calculated by linear stability
analysis for the full hydrodynamic theory [16] with v=0.2 St (—)
and v=0.08 St (—).
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FIG. 8. (Color online) Phase diagram as a function of accelera-
tion and frequency. Results of model calculated with v3 in Table |
shown with filled symbols and observations shown with unfilled
symbols. The symbols are same as in Fig. 4

symbols) with v=wv,, and calculated from the full hydrody-
namic analysis for a Newtonian fluid by Kumar and Tucker-
man [16]. The Faraday threshold from the model and the
stability analysis are in good agreement, but these differ sub-
stantially from the measured values. If we use »=0.08 St,
instead of the 0.2 St measured in steady shear, the stability
calculation reproduces the experimentally observed bound-
ary. This indicates that the discrepancy is due to the value of
viscosity input to the model rather than to a problem with the
model itself.

It is unsurprising that there is a quantitative discrepancy
between the measured and calculated phase boundaries. The
viscosity in the model comes from a spatially homogenous,
time-independent measurement. In contrast, the waves on the
fluid excite specific spatial and temporal scales and thus
probe the fluid’s response on scales different than the steady
measurements. Our model can be used to back out the re-
sponse of the fluid, but given the ad hoc nature of our exten-
sions to Eq. (1) we expect the results to be only approximate.
Figure 8 shows the results of tuning the viscosity to values
that reproduce the measured boundaries reasonable well. To
accomplish the latter we used the »; model in Table 1. In
principle, the agreement can be improved by employing a
frequency-dependent viscosity, but we will not pursue this
avenue any further because the main intent of our model is to
demonstrate that the multiple shear-thinning regimes can ac-
count for the observed transitions.

The original motivation for these experiments was to test
the hypothesis that shear-thickening is responsible for the
solitary structures observed in particulate suspensions
[4,5,10]. Since WMS shear-thicken we expected to observe
solitary structures in our experiments. Although we do ob-
serve solitary structures in WMS, the mechanism to which
we attribute these is unlikely to apply to particulate suspen-
sions. The mechanism we propose for strips waves relies on
the transition of the fluid from shear-thickening to shear thin-
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ning. First, while there is some evidence for a shear-thinning
phase following shear-thickening in particulate suspensions
(e.g., [22]), the observation remains contentious. Second,
even if there is such a transition it occurs at shear rates much
higher than the onset of persistent holes [5].

Our study leaves a number of open questions. We are
puzzled by the absence of an induction time. In the steady-
state measurements of viscosity there is always an initial
transient period before the viscosity reaches its asymptotic
value. The conventional wisdom is that during this period
there is a buildup of the shear-induced-structures that deter-
mine the stress response of the material. This initial period
typically lasts hundreds of seconds. Yet, in our experiments
we see strip waves develop within in seconds (see Fig. 1).
Thus, whatever microstructural transition is occurring in
WMS to produce strip waves, the buildup time is several
order of magnitude faster than we expected given the steady
shear measurements.

Yet another feature of our observations we cannot explain
is the striplike form of strip waves. Our model, which simply
describes the amplitude of a homogenous field, does not in-
clude spatial variations. Nonetheless, one possible answer
suggested by the model is that the transverse localization is
partly due to volume conservation. Our model shows that
large amplitudes are to be expected in fluids with a shear-
thickening to shear-thinning transition with increasing shear
rate, but there is insufficient fluid to produce large amplitude
waves everywhere. Thus, large amplitude waves can only
exist in some fraction of the containers area roughly equal to
the ratio of fluid depth to the amplitude of the waves.

V. CONCLUSION

Our experiments show that dilute CTAB-Nasal wormlike
micellar solutions vibrated in a Faraday system display two
transitions. The first is a garden-variety transition to Faraday
waves. The second is a new instability in which the fluid
localizes into strips of large amplitude waves. Through a
model based on the Mathieu equation we can identify that
the second transition arises from a local maximum in the
shear-rate dependent viscosity. Waves in parametrically
driven systems are only possible when energy pumped into
the system is sufficient to balance dissipation. Thus, viscosity
dissipation constrains the amplitude of the waves. When the
viscosity decreases as a result of the wave motion, as it does
in our wormlike micellar system, there is the potential for
instability. The success of our model, in reproducing the ex-
perimentally measured phase boundaries and the change in
amplitude at the transition, suggests that this instability sce-
nario is unfolding in the creation of the strip wave state. We
expect that the same instabilities will occur in other shear-
thickening dilute wormlike micellar solutions.
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